Design and the Projecting of the New

Mads Nygaard Folkmann, University of Southern Denmark

Abstract
The paper is a theoretical contribution to the discussion of projection in design and is, beyond the paper, a part of a larger discussion of meaning creation in design. The paper discusses the paradoxical situation in projecting the new and unknown as all projection necessarily is bound to a starting point in the given. Nevertheless, design offers a series of methods for projecting. The paper proposes five models in design that have attempted at organizing experience in a new way and aimed at offering a projection into a future with a concrete starting point and an abstract intention of carrying out an open exploration of the possible. These are selected due to their potential for evoking something previously unknown: (1) an exploration of design with artistic means, (2) an investigation of the potential of form, (3) the possibilities of experimentation, (4) the role of scenarios, and (5) the challenge of digital technology. In the discussion, a series of dichotomies are employed, known versus unknown and closure versus openness, and related to questions of linearity of prediction/anticipation on the one hand and the question of disrupting the linearity on the other hand. In connecting the real and the speculative, design is a central medium for future-oriented projection.

Keywords
Projection; design history; scenarios; experimentation; digital technology

Introduction
Design is often seen in a progressive perspective as a means of imagining some kind of future state, e.g. in the image of something to be ‘preferred’ (cf. Simon, 1996). Foremost, however, the question is how an act of projection towards a future and towards the new can be made. We may ask not only how design enables possibility (and thus unfolds a wide field of meaning), but also how design can be attributed with a direction, a logic of projection in the balance with the act of making possible.

This paper is an excerpt of a larger work (Folkmann, 2013) but looks in this context into the dynamics of projecting toward the new and on concrete strategies in design doing this. First, I will discuss how to project and provide the projection with a direction when all kinds of projections base on the paradox that we cannot find the new and unknown on the basis of something known. Next, I will discuss a variety of strategies in design to engage with the unknown, (1) artistic exploration, (2) the potential of form, (3) experimentation, (4) the use of scenarios, and (5) digital technology.

The Direction of the New
Conceiving of the future in an act of projection does imply an inherent paradox. How can we think of the new in the future in radical new terms if our starting point is the prerequisites of the given? That is also the paradox of imagination: How can we imagine something new if the process of imagination is bound to empirical material? And,
conversely, if we seek the radically new, as in a transfiguration of the given, how can we then “think of a direction or a trajectory without being able to anticipate a destination?” (Grosz, 1999, p. 19).

Design, however, often aims at anticipating a destination (e.g., by offering a solution to a problem), but the problem may be an element of fixation, as pointed out, for example, by Cross (2007), if the goal becomes too deterministic. Thus, we must avoid determinism and can aim at “direction without destination, movement without prediction” (Grosz 1999, 19), but we can also ask how we may keep the mind open to the entirely new, unexpected, and unpredicted without losing our sense of direction. Hence the challenge is to do both: keep the possible open and maintain a direction.

On this point it is vital to differentiate projection from prescription. Whereas prescription is normative in goal and process, projection may contain direction but is open-ended in its search for expression. On this point, Victor Margolin (2007) has made an important distinction between predictive and prescriptive future scenarios where a “predictive scenario is based on what could happen” and involved in “gathering data and organizing it into patterns that make reflection on future possibilities more plausible”; in contrast, “prescriptive scenarios embody strongly articulated visions of what should happen” (p. 5–6). In his discussion of how design may contribute to the construction of its audience, Carl DiSalvo sets Margolin’s concept of prediction in relation to a “tactic of projection” with “proficient use of design to express the range and complexity of possible consequences in an accessible and compelling manner” (2009, p. 53). We can point to two central elements of the tactics of projection. First, it is not marked by closure in trying to predict how things should be in the future. And, second, the open-ended search for the possible in design is led by an “activity of making apparent,” plausible, and persuasive (p. 55) by the ability of design to evoke concrete representations and suppositions of the possible.

But how can we program the direction if we do not know even what possibilities will arise and where we should search for them? This is, consequently, a matter of formulating the search for a direction in the realm of the known versus the unknown: The closer the possible gets to the known, the easier it is to program the direction toward it (as when the framework for the design process is clearly stated, for example, as the creation of a new chair), and the more the possible reaches out to something not yet known, the more contingent it becomes. Of course, the division between known and unknown is never clear-cut, as it also is a matter of defining frameworks for what is known and what is not. In most cases, elements of both the known and the unknown will be present, as will strategies of programming and contingency.

Often certain properties will be known, for example, the category of the object or product (e.g., furniture design or a toothbrush), and explorative strategies will be employed in order to find what initially is outside the property of the known, that is, to try to formulate progressive approaches for seeking the contingent and the possible findings it offers. That may occur as a strategy for seeking the new in the experimental exploration of details or in the active reframing of the problem spaces, where the frame of reference may be displaced. For example, developing a new toothbrush may be not so much about combining different materials in a new way but more about transposing to a framework for posing questions, that is, asking new questions about the culture of mouth hygiene.
In her discussion of how to obtain the new and move beyond the paradox of searching for something not yet known, Elisabeth Grosz, with inspiration from Henri Bergson and Gilles Deleuze, proposes two different models for conceiving the new: that of the “possible” in relation to the real and of the “virtual” in relation to the actual. For Grosz, the possible stands in a position of identity and resemblance to the real, which in its act of realization limits the sphere of the possible. According to this perspective, the possible is bound to the real, and consequently, it cannot not produce anything new that transcends the given. Where the “possible is regarded as a mode of anticipatory resemblance of the real,” by contrast, “the virtual never resembles the real that it actualizes” (Grosz, 1999, p. 27).

Grosz’s statement is clear: “While the concept of the possible doubles that of the real, the virtual is the real of genuine production, innovation, and creativity. It is only actualization that engenders the new” (p. 27).

Grosz points to two different ways of conceiving the possible in relation to the given. The first is given through the basic structural condition of possibility: that it relates to something, the real, in the same manner that new design is always based on existing material. The second way points to the pure transfiguring potential of the possible: It is a pure potential of possibility that differs from the real but in principle can be actualized any time.

These two models need not be combined in a perfect synthesis, but together they point to the paradox of formulating a logic of projecting: On the one hand, projecting should point in the direction of something in order not to lose its direction, while on the other hand, it should not be limited by the constraints of the existing in its search for the entirely new if the goal is radical innovation. In the following, I will describe a series of approaches to investigating how projecting might operate. I will reach back into design history in order to find paradigmatic models of creating figurations through design.

**Models of Projection**

I will describe a series of models of design aimed at creating new paradigms of experience, and they are selected due to their potential for evoking something previously unknown even if they are not similar in extension or character. I move back into design history and point out some exemplary turns and illustrative products that have all attempted to organize experience in a new way and aimed at offering a projection into a future with a concrete starting point and an abstract intention of carrying out an open exploration of the possible. Here, projection has been engaged in its potential to point in new directions and thus effect shifts of paradigm in experience. As a concluding element, I point to digital technology which has proven to offer radical challenges to design.

I point to five models: (1) an exploration of design with artistic means, (2) an investigation of the potential of form, (3) the possibilities of experimentation, (4) the role of scenarios, and (5) the challenge of digital technology. The purpose of the following is not to offer an alternative selection of the overwhelming material of design history, even if historical studies will only gain in importance in the future, as historical material can offer a central source of understanding how we arrived at the existing situation and, further, how we project ourselves into the future. My aim is to employ a series of dichotomies, known versus unknown and closure versus openness, and relate them to questions of linearity of prediction/anticipation on the one hand and the question of disrupting the linearity on the other hand. Thus, my goal is to outline several models of approaches to projection and the conception of experience through design.
The Role of Artistic Means

Even in its early history, design was conceived as a discipline influenced by artistic approaches; a good example of this is the English arts and crafts movement, which reacted to the growing industrialization in the late nineteenth century and claimed the importance of traditional handicraft and the skilled artist. But even more explicitly, the role of the artistic came to expression and debate in the Bauhaus school in Germany (1919–1925 in Weimar, 1925–1932 in Dessau, 1932–1933 in Berlin). Bauhaus initiated a modernist, progressive search for a new order of things with an implicit, linearly conceived anticipation of a new state of being; the means and methods often employed by the staff and students at Bauhaus were frequently characterized by a disruptive and often open exploration of and by artistic means, for example, in the studies of color, forms, and movement conducted by Johannes Itten, Wassily Kandinsky, and László Moholy-Nagy, among others. Hence, Bauhaus was situated in a paradox that was both productive (and influential in terms of artistic exploration) and limiting (as the paradox could not be resolved). Bauhaus, or at least a part of it, aimed at developing a new expression of form that should both reflect contemporary industrial culture and, on a concrete level, be realizable in industrial production, but the artistic base and bias of the exploration of this new language of form was often in contrast and even in contradiction to the requirements of modern industrial production.

One example of this is the lamp WG24, which Wilhelm Wagenfeld designed with Karl J. Jucker in 1924. With its clear, geometrical forms, its use of the modern materials of glass and steel, and its transparency of structure and assembly, it was conceived as a direct reflection of industrial aesthetics. And through this tight connection of expression and culture, the lamp was almost deliberately designed to be an iconic reflection of its time. But from the outset, the lamp was impossible to manufacture industrially. It requires handicraft and precision in the glasswork and in the assembly. The lamp reflects industrial culture but does not match its means of production. In this respect, Bauhaus and the WG24 express a central paradox of design that has been with us ever since: the paradox of artistic ambition of form and expression on the one hand and the requirements of industrial production and mass manufacturing on the other hand.

In relation to the discussion of direction, this represents a complication of means and goal. Apparently the goal is known, although it is vaguely stated—the improvement of contemporary and future culture by means of a new culture of design—while the means, in their artistic constitution as being under constant development, are situated in the realm of the unknown. However, just as the means are blurry, the goal becomes blurry too. There might be a stated formulation of vision and a sense of direction, but the vision may move out of sight if the means are only barely capable of realizing the vision (in focusing the unknown) and actualizing it. Thus, when the employment of artistic devices entails an open exploration of previous unknown modes of expression, these may not be the obedient servants of the desire to reach a goal; instead, they may lead the process astray or even disrupt the expression of the goal. In this sense, the distance was too distant from the formulation of the first Bauhaus manifesto in 1919 by Walter Gropius with its claim of architecture as the end goal of all creative endeavor, resulting in “the new building of the future” (Gropius, 1919), to the disparate workings of the school, until it was closed by the Nazis in 1933.

The Potential of Form

Louis Sullivan’s credo of “form following function” has been a central dogma of design, describing form as emerging from function as its pure and logical consequence. The credo has often been understood as the submission of form under function, but in Sullivan’s
conception, the point was that function and form are organically interconnected and parts of the same unit of expressing the spirit of the modern times. By contrast, matters of form have also been articulated as relatively independent of the question of function. In particular, this is expressed in the tendency toward styling in design, that is, when the inner functional component of the product is considered a premise of the design, whereby the product in question can differentiate itself from other products only by means of “outer” appearance. This is indeed a factor for design objects that strive for visual appeal in a competitive market. An early and essential example of this is the trend of American streamlined design, which was propagated by Raymond Loewy among others. In the design of logos and products for the world of growing consumption, such as toasters, campers, and cars, the claim was the prerogative of sensuous, appealing form in a combination of organic shapes and inspiration from the aesthetics of the industrial world, for example, in the use of the principles of aerodynamics.

As a tendency, the dominance of form contains a clear statement of the means of design, which are to increase their emphasis on parameters of beauty and appearance. Likewise, the goal remains embedded in the same ambition of making things better at the small scale of the product. With a keen awareness of the role of a catchy statement for marketing purposes, Loewy said, for example, “I can claim to have made the daily life of the twentieth century more beautiful”; and further, “Design, vitalized and simplified, will make the comforts of civilized life available to an ever-increasing number of Americans.”. Thus, it may be that a design trend such as the streamlined design did not have a far-reaching projection as in a concept of a utopia, but it did provide a clear sense of direction in its exploration of the form language that reflected the modern age. On the level of form and the concrete product, it thus explored the possibilities of experience based on the conditions of modern life. Based on the concrete and properties of the known (e.g., a toaster) and thus not the abstract of a vision residing in the unknown (e.g., a reversal of consumer culture), it sought to employ form as a means of framing experience, that is, of enabling new kinds of connection of sensual material (in the expression of form) and conceptual meaning (in improving comfort and furthering the good life). Thus, working with form can be a driver for direction; it takes its starting point in a steady line of anticipation and prediction, as the desired solution is known in advance (e.g., an improved toaster); however, it may suddenly prove to have an additional disruptive effect if the expression of form radically challenges the customary appearance of things and, hence, their ability to fit into the realm of experience. Working with the outer appearance of form can suddenly lead in new directions and evoke new modes of experiencing the surroundings.

**Experimentation**

Experimental strategies in design play an important role in the development of design. In this context, I mean experimental in the sense of design objects and design solutions that are not primarily aimed at problem solution or seek to apply to a market but investigate their own properties, that is, in what way they constitute design and what design is. Among other examples, this approach is found in the critical design movement and designers whose designs explore the ontology of design more than they aim at problem solving. In design history, however, the employment of means of design in an experimental setting reaches back to movements in the 1960s, such as the Italian antidesign and radical design movements.

Consequently, experimental design is not necessarily in demand in industry, where the focus is often on solving a problem and arriving at a solution that can be converted into a product. Often, then, experiments take place outside industry: in schools or galleries and
in the work of independent designers. Reasonably, the question can also be asked why design should be experimental in its setting and questioning of things, and whether it should perhaps just stick to its heritage of being applied art, that is, a way of employing artistic means for a certain purpose. Indeed, should design not just be employed as a means of creating the best possible solutions to the problems we are able to find and state? And, consequently, should we not leave it to art, that is, the “nonapplied” or “beautiful” arts (as in the classical tradition of les beaux arts), to pose the essential questions about the being of things? The case is, however, that not only is there an interface between design and art in the multiple phenomena of “designart” or “crossovers,” where the zones of the purposeful and the purposeless interact to produce new art objects attributed with a function or new design objects that explore the means and form language of design but which would hardly stand the test of use.

Even more important, the self-questioning of design in design experiments is vital for the development of design: Design experiments posit that design is not only a means of reaching a goal, that is, solving the properly stated problem. In fact, on a fundamental level, design is a central interface with reality, which lets design structure experience and provide access to some parts of reality while leaving some elements invisible. To illustrate, a project like Daniel Rozin’s circle mirror project explores the materialization of immaterial technology when a large number of small metal plates respond to the input of a digital camera and image processing, thus producing an analog output with a rough pixelation that marks the transition from one medium and form of technology to another (Figure 1).

![Figure 1: Circles Mirror, 2006, by Daniel Rozin. Nine hundred laminated circle prints, motors, video camera, control electronics, custom software, microcontroller. Photo: David Plakke.](image)

Another example is Thomas Thwaites’s design school project of attempting to make a DIY toaster (Figure 2). Thwaites tried to build a toaster from scratch, including finding the raw material for all the different components. Thus, the process of designing the toaster both investigated and displayed the complexity of production as it became clear that even a seemingly simple product such as a toaster is composed of a large number of complex materials. Thwaites’s project shows that even a simple product like a toaster is impossible to design without taking a whole series of cultural prerequisites (e.g., the history of refining materials and technology) into account. In this way, the DIY toaster makes visible that a
toaster is not just an object of consumption but also the condensed expression of development in culture and civilization.

Figure 2: DIY Toaster. Design: Thomas Thwaites. Photo: Daniel Alexander.

Hence, design experimentation reveals and enables reflection on the notion that design, in terms of both the process of designing and the objects of design, is more than a transparent device or medium that improves people’s interaction with the world, and that in itself actually produces and reflects meaning. As design experimentation is explicit about the level and production of symbolic meaning and the production of it in design, it reflects how design can be employed in strategies of producing culture, creating meaning, and schematizing experience: Design experimentation can visibly display the idea that design objects are media of experience and cultural production. The exploration of design as a medium in its own right may require the projection in design experimentation to stay relatively close to the explored medium itself. The exploratory strategy may point to an environmental or cultural effect (e.g., the electrical radiation or the visualization of electricity in the Static! project where the wire glows according to the degree of electrical power, Figure 3), but the experiments often remain limited in impact and bound to the concrete design object. That is also an advantage of this approach. It begins in the object (and the way in which it is designed and structured by design), not in an abstract vision. In this sense, both the means and the goal of the design are open to an exploration into the realm of the unknown; there is no clear goal setting or any prescribed means.
Figure 3: Energy as design material. The power aware cord lights up according to the amount of energy surging through it. The cord is one of the results from the research project *Static!* at the Interactive Institute in Sweden. Design: Sara Ilstedt Hjelm.

Consequently, design experimentation does not operate with prediction or anticipation but with an open logic of searching, which can often produce disruptive results, as did the DIY toaster. Design experimentation is about investigating the possible of design to the limits of impossibility, challenging design by pushing it to its border, but doing this on the basis of the object—as an emergence of possibilities explored in and through the concrete object.

**The Role of Scenarios**

A central means in design methodology is to create concrete visualizations of possible futures. Here, practice-based tools are employed in investigating the emergence of a becoming future, that is, in stating what the goal could be. In this manner, “Rehearsing the Future” is the title of a book on the topic (Halse et al., 2010). A range of refined tools has been developed, including “design labs” and “design spaces,” as places for a controlled search for the possible or creative techniques for individual and group-based exploration of possibilities. An example is the construction of scenarios for expressing in a concrete form what a given number of possible futures might look like, as Ézio Manzini attempted with his concept of design-oriented scenarios (DOS), in an effort to render visions concrete, probable, and, hence, open to reflection and discussion (Manzini, 2003). Thus, the scenario has strength of visualization, employing design as a tool of world construction and a means of social engagement. The scenario is aimed at sparking debate and engaging people when they encounter possible versions of a given condition or place. Scenarios are, in the words of Wolfgang Jonas (2001), “images of possible, probable, or preferable futures or futures to be avoided, and sometimes comprise the steps to achieve them” (p. 76). In Grosz’s terms, however, this kind of approach could never foster new knowledge, as it configures, constructs, and stipulates on the basis of known elements. Still, it is an important tool for obtaining new versions of the real and, with Grosz’s concepts, being driven further in the direction of achieving something entirely new.
In the historical inventory of approaches to design methods, Otl Aicher has challenged the role and character of projection in trying to make its goal open to possibilities while at the same time keeping the means concrete. In what I will call a *progressive phenomenology*, Aicher sees design as a means whereby the human subject not only experiences the world (hence, the classic theme of phenomenology) but also seeks to create the world, to *zu entwerfen*. By designating a zone that is free from outside influences, the human subject is defined as the starting point for creation through projective cognition. Aicher speaks of creative making as an unfolding of the subject and as “the extension of the subject into the self-organized world” (1991a, p. 190-191).

Aicher explores the potential of the interaction, that is, what happens when designing and projecting are activated. Aicher balances on the cutting edge of accepting the world as it is and assuming, with regard to the artificiality of the modern world, that “the world that we live in is the world as we made it” (p. 185). Projecting means that the world is open to intervention, which means taking responsibility for the way in which things function and evolve. According to Aicher, design is a cultural and reflective activity that functions as a medium for raising “fundamental questions of human existence” within the modern, “artificial world” (1991b, p. 75).

Aicher’s projective tool is *the model* as a way to devise an openness toward the world, as it provides access to reality through its constructive approach. To project is to open up “new spaces of thinking”; to use the model is to focus the openness and give it direction but still keep open the scope of possibility. The model states an open-ended hypothesis, which is the opposite of asserting an idea of finalized truth and of stating scenarios with a determinate extension. Thus, the model differs from the hypothesis based on presumption as in the building of the scenario. Through the model and its projecting, a new space of the possible comes into being; we “transgress the limits of the given world in order to reach new possibilities” (Aicher 1991b, p. 29). This implies an experimental process, where the feedback mechanism of trial and error is important. He points to design as a process of constant “comparisons and corrections,” as projective thinking that “throws itself into the unknown” (p. 28). Aicher prefers the concept of steering over planning as a design methodology. Making plans means deploying an instrumental and abstract logic of principles that misses the dynamics of reality; using a strategy of steering means using “thinking with feedback” based on “observant testing,” sticking to the immediate (p. 138), learning from feedback, and constituting a free space in the making. Furthermore, Aicher notes that thinking in the sense of grasping (*be-greifen*) something is always a physical act, where the hands are used as an active medium (p. 24). Aicher thus demonstrates how the classic virtues of design, imagining through visualization, for example, in drawing and shaping mock-ups, can be conceived within a larger framework of a philosophically founded phenomenology of projecting through design.

Despite the historical bias of an optimist-modernist tendency, Aicher contributes to the discussion of how to attribute direction to projection when the horizon of possibilities is to be kept open all the way through the act of projecting.

**Digital Technology**

Modern technology has been a driver of design and, conversely, design has indicated new directions for technology. Design and technology are inextricably interwoven, even to a degree where design can be regarded as a contemporary art of technology (Buchanan 1992), that is, as a mediator and translator between culture and technology and, hence, as a generator of a new culture of technology.
In this context, I focus on the microchip as a paradigmatic example of technology influencing the conception of design, what can be made possible through design, and how design objects make new solutions possible. Microchips are, in the words of Gert Selle, “the fundamental design of our age” (2007, p. 215). The radical aspect of the microchip lies primarily in its size. First, its digital technology has revolutionized the handling of information; the limit has not yet been reached in terms of how much information (in the form of bit streams) can be processed by a microchip. Second, the microchip, as reflected in its name, has obtained this in a process of miniaturization; it marks the “cultural fracture of materiality and immateriality” (p. 214). The chip has not yet disappeared, however; it still has a physical extension, and there is of course a physical limit to the smallness of its scale. But it has decreased in size to a point where microchips can be incorporated virtually everywhere. As a result, more and more products employ electronic technology to a degree where we can speak of ubiquitous computing. The microchip has played a leading role in producing a new culture of design that is characterized by anonymous, technical products (and thus producing the direct opposite of a culture of a cult of the designer) and mysterious black box design, where the driver of development is transposed from the outside (of form) to the inside (of capacity of information). Selle claims that the microchip becomes “the new thing of wonder that completely performs its job in hiding. The potency of design that is attributed to it is defined by the changes of the life world that it effectuates” (p. 214). Of course, a microchip will always be only a small component in a larger, more complex entity of design, but by enabling information processing, it carries with it a tendency toward creating new possibilities and organizing knowledge in new ways.

The means of the microchip is known—miniaturization and information processing at an increasingly high speed—but the goal has been more unclear. On the one hand, the development of the microchip has been driven by the ambition of incorporating it in new versions of existing products; on the other hand, the employment of the microchip has often been disruptive in terms of leading to new types of products and to unexpected uses with far-reaching implications. For example, before 2003, it could hardly be imagined how full-tone sound production could be made electronically possible in tiny electronic devices; even the pocket computer in the form of smart phones was hard to imagine before the introduction of the product type in 2007. In the same vein, the radiofrequency ID chip has made possible incorporating information tags in many types of products (and even in animals). As a model of projecting a new mode of experience, the microchip describes the tendency of the seemingly small and insignificant detail with a huge impact. The microchip is a central device in structuring the interfaces with which we meet the world and which influence the conditions of experience. Thus, interface should be understood not only in terms of designed surfaces (on screens, in computers, in 3D) for our meeting with technology (i.e., the discipline of interface design which has, for example, been described in research into human-compute interaction); interface is a much broader term that designates the points of contact between us and our designed environment. What happens is that the increasing use of digital technology in products submits their scope and impact to a process of devisualization (what you get is far more than what you see), which is, paradoxically, mediated by visual means (e.g., in a visual interface). This type of product is in principle limitless in its inner extension.

Furthermore, the digitally operating object can evoke an act of unrealization: it is capable of creating a new, imaginary model of reality at a distance from the world of physical realities. Of course, as a product, the object functions within the world of realities; it can be
marketed as a consumer product like any other product. Conversely, however, this kind of object has the potential to create new modes of representing and accessing reality. An example might be the ways in which social relations are established and formulated (and often purposely distorted) through social digital platforms like Facebook and Twitter. Of course, material objects with a limited outer extension may also involve a complex communication of imaginary meaning, but digital objects expand the dimension of imaginary meaning by virtue and means of their inner potential of creating new models or representations of reality. Still, the effects of digital objects are far from William Gibson’s dystopian vision of humans with technological implants that generate far-reaching expansions of consciousness in integration with a wider network of consciousness, as described in his 1984 breakthrough novel Neuromancer (where Gibson not only anticipated the Internet but also invented the concept of cyberspace). But on a structural level, the effect is similar: we meet a part of the world through digital technology, and with its expanded internal extension, it has a vast influence on the way we meet the world, that is, how experience is enabled, structured, and staged.

Conclusion
We cannot with any certainty predict or project the future but we can engage in design in order look for ways of projecting and entering the future. In this regard, design is special, not only for projecting the new but also for methodologies in doing this.

In its dynamic engagement in the real and the non-real, in the world of the realities and the imaginary, in technology and the arts, in problem solving and in problem searching, in bounded contexts and in visual-tactile speculation, design is a central means of the modern culture to search for a progressive engagement with the future, that brings with it the past, takes its starting point in the present but ultimately searches for the not-yet-given of the future.

References


**Mads Nygaard Folkmann**

Associate Professor in Design Culture, Design Theory and Design History at the Department of Design and Communication, The University of Southern Denmark in Kolding, Denmark. His main field of research is aesthetics, design theory, cultural analysis of design, and the role of imagination and the imaginary in design. He holds a PhD in Comparative Literature and has published on topics in design, culture and literature.